Concordism and String Theory

David Shatz, a member of Tradition’s Editorial Board, is professor of philosophy at Yeshiva University and editor of The Torah u-Madda Journal. He is the author of an erudite and eloquent essay entitled Is There Science in the Bible? An Assessment of Biblical Concordism, which was recently sent to me by a reader.[1]

Early in the essay, Professor Shatz poses the following question: why is it that many Modern Orthodox Jews are quick to reject attempts by writers like N. Aviezer and G. Schroeder to demonstrate concordism – the idea that the Torah “teaches science and metaphysics in a positive fashion”?[2] Shatz responds,

One answer, I think, is that Aviezer and Schroeder are associated with a method of kiruv which critics regard as potentially counterproductive. Concordists use the “discovery” that the Torah already includes truths that scientists discovered millennia later to instill awe, wonder, and belief in the Author’s omniscience. But when kiruv is done this way, fluctuations in scientific beliefs could induce cynicism over time: when science changes, out go the proofs of the author’s omniscience that were based on a correspondence between Genesis and the old science. If anything, the Author will look ignorant, has ve-shalom, when the science changes. Concordism comes off as a gimmick.

This is an important point, and one which I emphasised in Genesis and the Big Bluff (which I wrote several years before reading Shatz’s essay). To demonstrate where Dr. Schroeder’s approach could go wrong, I used the example of String Theory. I wrote in Genesis and the Big Bluff,

The central thesis of Genesis and the Big Bang is that traditional sources – the Talmud, midrashim and medieval commentators – provide a view of the cosmos which is strikingly in agreement with modern scientific observation and hypothesis. Hence, the subtitle of the book – The Discovery of Harmony between Modern Science and the Bible. But Dr. Schroeder never ponders the possibility – and consequences – of contemporary scientific theories turning out to be wrong. If you claim congruence between Torah sources and scientific theories, and those theories are eventually rejected, what are the implications for the Torah?

Dr. Schroeder introduces his thesis that traditional Torah sources presaged String Theory on page 59 of Genesis and the Big Bang:

To form the universe, God chose from the infinite realm of the Divine, ten dimensions or aspects and relegated them to be held within the universe. These dimensions are hinted at in the ten repetitions of the statements “and God said…” used in the opening chapter of Genesis. The cabalists believed that only four of the ten dimensions are physically measurable within today’s world. The other six contracted into submicroscopic dimensions during the six days of Genesis…

With an amazing congruity, particle physicists now talk of the String Theory, a unified description of our universe in ten dimensions… These dimensions according to the physicists are the four that we know, length, width, height and time, plus six others. These six are contracted into a size far too tiny ever to be observed even by the best of microscopes…

An obvious objection to be made here – and one on which I shall not elaborate in this post – is that the association Dr. Schroeder claims between the Torah and String Theory is extremely flimsy, and is unsubstantiated (except for that vague phrase The cabalists believed…).

But even if the association was more robust, one should beware of aligning the Torah with the latest theories in physics. Genesis and the Big Bang was published in the early 1990s, when String Theory was all the rage in physics. Two decades later, things look very different. String Theory is controversial, entirely theoretical (for the foreseeable future, it will not be possible to test its predictions, since that would require particle accelerators orders of magnitude larger than anything available), and of questionable usefulness to physics. In its 14th August 2006 edition, TIME Magazine published an article entitled The Unravelling of String Theory. The magazine’s science writer, Michael Lemonick, points out that despite its initial popularity, it has accumulated many detractors:

Not Even Wrong, by Columbia University mathematician Peter Woit, and The Trouble with Physics, by Lee Smolin at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, both argue that string theory (or superstring theory, as it is also known) is largely a fad propped up by practitioners who tend to be arrogantly dismissive of anyone who dare suggest that the emperor has no clothes.

Lemonick proceeds to describe some of the problems with String Theory:

The mathematics is excruciatingly tough, and when problems arise, the solutions often introduce yet another layer of complexity. Indeed, one of the theory’s proponents calls the latest of many string-theory refinements “a Rube Goldberg contraption.”

USA Today ran an article entitled Hanging on by a thread, making similar points. Nature published Theorists snap over string pieces.[3] In an article dated 1st June 2009 and entitled What string theory is really good for, reporter Jessica Griggs of New Scientist writes,

The critical voices have in the meantime been getting more strident. They complain about string theory’s weird, unverifiable predictions – for instance, that space-time has any number of dimensions, usually 10, rather than the three of space and one of time we see. Folding 10 dimensions down to four can be done in a mind-boggling 10^500 ways, with no way of saying which of them corresponds to how our universe does it. As if that weren’t enough, the energies needed to create the tiny strings the theory is woven from make them impossible to detect. To its detractors, string theory is long on mathematical elegance, but woefully short on real-world relevance.

Nobel Prize winner Sydney Glashow and his colleague Paul Ginsparg warned that “contemplation of superstrings may evolve into an activity as remote from conventional particle physics as particle physics is from chemistry.”

In March 2010, New Scientist interviewed Roger Penrose.[4] Penrose is a world-famous mathematician who has won numerous international prizes. In 1994, he was knighted in recognition of his services to science. He is the author of several books, including the best-selling Road to Reality. Penrose is perhaps most famous for his collaboration with astrophysicist Stephen Hawking in the study of black holes. The New Scientist interview was entitled Happy-go-lucky, no strings attached. The happy-go-lucky part is a reference to Penrose’s pleasant disposition (he describes himself as an incurable optimist). The no-strings-attached part refers to his deep scepticism of String Theory. Here is the relevant part of the interview:

And that [String Theory], to Penrose, is a Bad Thing. Penrose has no time for strings. “My main objection is all those extra dimensions, which don’t make any sense… String theorists are not facing up to their problems. I don’t see string theory converging on anything. In fact, it’s diverging: it has got wilder and wilder.” That’s part of the reason why… he will publish Fashion, Faith and Fantasy in the New Physics, a critique of modern physics. String theory provides the “fashion”, but there are other targets too.

The prominent physicist Lawrence Krauss apparently devoted much of his 2005 book, Hiding in the Mirror [which I have not read], to a scathing attack on String Theory. Finally, here is what Paul Dirac’s biographer (himself a physicist) has to say:[5]

Although string theory is the only strong candidate for a unified theory of the fundamental interactions, by no means all theoreticians are convinced of its value. A substantial number of physicists worry that the theory makes sense only in more than four dimensions of space-time… More worrying, it has received little support from experiment: string theory has yet to make a clear-cut prediction that experimenters have been able to test. These are among the key signals, several physicists have argued, that the theory is absurdly over-valued and that it would be better to pursue other avenues. One of the most vocal sceptics is the Standard Model pioneer [and Nobel Prize winner] Martin Veltman: “String theory is mumbo jumbo. It has nothing to do with experiment.”[6]

Dr. Schroeder writes for the broad public, whose knowledge of science is usually rudimentary. These readers are in no position to know that among mathematicians and physicists, scepticism of String Theory runs high. But this point is obvious to those who specialise in the intersection of religion and science. One of the most prominent of these specialists is Ian Barbour.[7] Barbour, now retired from academic life, was professor of physics and religion at Carleton College in Northfield, Minnesota, and a pre-eminent figure in the field of science and religion, having been awarded the Templeton Prize in 1999. He begins by reviewing Dr. Schroeder’s approach:

Schroeder holds that other scientific facts can be found in later rabbinic writings. He describes in detail the commentary on Genesis by the thirteenth-century kabbalist Nahmanides… Nahmanides also said that there were ten principles or dimensions of reality corresponding to the ten times that the phrase “and God said” is repeated in Genesis. Schroeder claims that this has been confirmed in a remarkable way by recent superstring theory, which (as we saw) postulates ten initial dimensions…

Barbour proceeds to demonstrate the weakness of this argument:

Moreover, the use of superstring theory seems to me particularly dubious because it is highly abstract and speculative and cannot be tested experimentally at energies available in any existing or projected particle accelerator…

Let us see how a more sober observer of contemporary physics than Dr. Schroeder describes String Theory. Writing a number of years before Genesis and the Big Bang was published, Professor Timothy Ferris said:

Such optimism [about String Theory] may, of course, prove to have been misplaced. The history of twentieth-century physics is strewn with the bleached bones of theories that were once thought to approach an ultimate answer. Einstein devoted much of the latter half of his career to trying to find a unified field theory of gravitation and electromagnetism… Yet nothing came of it… Wolfgang Pauli collaborated with Werner Heisenberg on a unified theory for a while, then was alarmed to hear Heisenberg claim on a radio broadcast that a unified Pauli-Heisenberg theory was close to completion, with only a few technical details remaining to be worked out. Put out by what he regarded as Heisenberg’s hyperbole, Pauli sent… colleagues a page on which he had drawn a blank box. He captioned the drawing with the words, “This is to show the world that I can paint like Titian. Only technical details are missing.”[8]

Now, do these sentiments prove that String Theory is wrong? Of course not. There are many top-notch physicists who believe that it could lead to the deepest explanation of nature yet. Some believe that it will usher in that elusive theory of everything linking all four fundamental forces of nature. But this is far from certain, as should be obvious from the sceptical comments cited above. It is quite possible that String Theory will end up as a footnote in the history of physics. If you handcuff the Torah to some contemporary theory in physics, what will happen if that theory sinks? Retro-prophecy begets quickie emunah – flimsy and fragile. If the science fails – and science is a human endeavour with prominent historical failures – the Torah falls too.


There is another reason to be suspicious of Dr. Schroeder’s methodology, which is not examined in Professor Shatz’s essay. How robust is Dr. Schroeder’s approach? Can one link concepts from physics with religion in ways that undermine Dr. Schroeder’s thesis? In 1961, Murray Gell-Mann introduced a classification of elementary particles called hadrons. For his work, Gell-Mann won the Nobel Prize in physics in 1969. Gell-Mann’s own name for the classification scheme was the eightfold way, because of the octets of particles in the classification. The eightfold way achieved experimental verification when a previously undetected particle which it predicted, omega minus, was identified in a bubble chamber experiment at Brookhaven National Laboratory. The term Gell-Mann used for his scheme – the eightfold way – is a reference to the eightfold way of Buddhism – a choice which is reflective of Gell-Mann’s eclectic interests.

How would Dr. Schroeder approach this? Would he write of the amazing congruity between particle physics and Buddhism, and encourage us to accept the truth of the latter? If not, why not? Is the eightfold classification scheme any less convincing as evidence for Buddhism than associating String Theory with the Torah because the phrase And God said appears ten times in the creation narrative?

Here is a second example. The website is slick, its content sophisticated, the science apparently up-to-date.[9] Various explanations about the speed of light abound, including the history of attempts to measure this constant. The site comes with the usual clarifications regarding frames of reference and problems of measurement. It explains, plausibly, that stating the speed of light in terms of lunar orbits per Earth day allows one to express the speed of light as an absolute quantity, regardless of one’s platform of observation. It is only then that one discovers that this is a Muslim site, which goes on to claim:

But 1400 years ago it was stated in the Quran (Koran, the book of Islam) that angels travel in one day the same distance that the moon travels in 1000 lunar years, that is, 12000 Lunar Orbits / Earth Day. Outside the gravitational field of the sun 12000 Lunar Orbits/Earth Day turned out to be the local speed of light!!! This definition is independent of direction and common to all observers: An observer near a black hole, for example, sees the speed of light outside gravitational fields a zillion km/s but still equal to 12000 Lunar Orbits/Earth Day!!!

So the Quran apparently managed to deduce the speed of light 1400 years ago. Shall we accept this as evidence for the truth of Islam?


I do not claim that that the Torah does not contain scientific truths only recently discovered; perhaps it does. Furthermore, it may be possible to evaluate similar claims from other religions according to some objective scheme that will indicate that the Torah claims are more convincing. But this has not been done, as far as I know, and certainly not in Dr. Schroeder’s books. Evidence for the Torah’s authenticity is only beneficial if it is robust and unique to Judaism. If the “proofs” are so fragile that a similar methodology will yield proofs for the truth of other religions, one has achieved little.

Just as important is the realisation that science is a fallible human enterprise, and that in physics and other branches of science, more wrong turns are taken than right turns. The tendency of some authors to impute infallibility to the latest paradigms – and to pretzelise Torah sources so as to fit with these paradigms – is a consequence of the ignorance of the history of science.


Retrieved 18th March 2013.
[2] “What we have here, then, is a deep, instinctive resistance to an approach taken by the very medieval thinkers whom Modern Orthodox Jews usually point to and invoke as their models and ideological forebears. Why this instant, reflex-like, dismissal of concordism on the part of some or many Modern Orthodox Jews?” Is There Science in the Bible? An Assessment of Biblical Concordism, David Shatz, TRADITION 41:2 / © 2008 Rabbinical Council of America.
[3] From an article by the physicist Sean Carroll in New Scientist, 19th May 2007.
[4] New Scientist, 13th March 2010, page 28.
[5] The Strangest Man, Graham Farmelo, Basic Books, 2009, page 437.
[6] Martinus Veltman (born 1931) is a Dutch physicist, who, together with his student, Gerard ‘t Hooft (born 1946), shared the Nobel Prize in physics in 1999 for elucidating the quantum structure of electroweak interactions.
[7] Ian Barbour, When Science Meets Religion, HarperSanFrancisco, 2000, page 46.
[8] Timothy Ferris, Coming of Age in the Milky Way, pages 332-333.
[9] See
Retrieved 27th August 2011.


2 Responses to “Concordism and String Theory”

  1. mike Says:

    Since you mention David Shatz, do you have any opinions regarding Rabbi Slifkin’s book on science and Torah? His approach does not have the problems that Dr. Schroeder’s book and the like have.

    David Shatz writes praise regarding rabbi Slifkin’s approach :

    “Rabbi Slifkin’s book is hands down the best Orthodox work on the evolution-creation issue–and perhaps on Orthodox Judaism’s confrontation with modern science. Written with a marvelous lucidity, it removes a group of flawed but tenacious arguments from the table and develops a formidable if controversial alternative. That the book has provoked, and will continue to provoke, debate and disagreement testifies to its importance and to its sharp and clear formulation of the issues and challenges”


    […] […]

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: